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Abstract

An interfacial crack with electrically permeable surfaces between two dissimilar piezoelectric ceramics under elec-

tromechanical loading is investigated. An exact expression for singular stress and electric fields near the tip of a per-

meable crack between two dissimilar anisotropic piezoelectric media are obtained. The interfacial crack-tip fields are

shown to consist of both an inverse square root singularity and a pair of oscillatory singularities. It is found that the

singular fields near the permeable interfacial crack tip are uniquely characterized by the real valued stress intensity

factors proposed in this paper. The energy release rate is obtained in terms of the stress intensity factors. The exact

solution of stress and electric fields for a finite interfacial crack problem is also derived.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric ceramics have potential applications in sensors, actuators and electromechanical devices

due to their inherent coupled electromechanical behavior. Piezoelectric ceramics are susceptible to damage

in the form of cracks due to their brittleness. Defects such as cracks are known to significantly influence the

strength of piezoelectrics. In order to understand fracture behavior of piezoelectric materials under elec-

tromechanical loading, it is of great importance to investigate problems of cracks. Extensive studies on the

subject of cracks have been carried out by many researchers. A summary of the results by previous works

can be found in Zhang et al. (2002).
Studies on the fracture of bimaterials have been performed for an interface crack between two dissimilar

piezoelectric materials under electromechanical loading. Considerable effort has been made to explore the

structure of crack tip singular fields. Electrically impermeable, conductive or permeable conditions on the

interfacial crack surfaces have been employed in the literature to study fracture behavior of piezoelectric
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bimaterials. Suo et al. (1992) solved the problem of an insulating crack between dissimilar anisotropic

piezoelectric media. Their result showed that the interfacial insulating crack tip field consists of both a pair

of oscillatory singularities and a pair of nonoscillatory singularities. Subsequently, Beom and Atluri (1996)

derived a complete form of stress and electric displacement fields in the vicinity of the tip of an insulating
crack between two dissimilar anisotropic piezoelectric media, and proposed new definitions of real-valued

stress and electric displacement intensity factors for the interfacial crack. Recently, Beom and Atluri (2002)

investigated the problem of a conducting crack on an interface between dissimilar anisotropic piezoelectric

media. They discovered a new type of singularities around conducting interface crack tips, which consists of

two pairs of oscillatory singularities. On the other hand, the permeable model has been employed to analyze

an interfacial crack between two dissimilar piezoelectric materials (Wang and Han, 1999; Gao and Wang,

2000, 2001). Gao and Wang (2000, 2001) obtained the result in which the structure of singular fields near

the permeable interfacial crack tip is the same as that near the impermeable interfacial crack tip. They also
found that field intensity factors of a permeable crack can be obtained from the corresponding value of an

impermeable crack.

It is the purpose of this study to investigate the problem of an interfacial crack on the interface between

two dissimilar piezoelectric media. The crack surfaces are assumed to be electrically permeable. The

problem is formulated using the complex representation. The closed form of the singular crack tip fields for

the interface crack between dissimilar piezoelectric materials is derived here using an analysis based on

analytic functions. A stress singularity type around the interface crack tip is discovered, which is a contrast

to the result by previous works. A definition of real-valued stress intensity factors is proposed, and the
energy release rate is obtained in terms of the stress intensity factors. A closed form of the solution for a

finite crack on the interface between dissimilar anisotropic piezoelectric media is also derived.
2. Formulation

Let us consider a generalized two-dimensional deformation of a linear anisotropic piezoelectric solid.

The three components of displacement and the electric potential are assumed to depend only on the in-

plane Cartesian coordinate, x1 and x2. According to Barnett and Lothe (1975), a general solution for the
displacement and electric field that satisfies the equations of equilibrium, and the corresponding stress and

electric displacement components can be expressed in terms of four analytic functions as
vJ ¼ 2Re
X4
K¼1

AJKfKðzKÞ
" #

;

R1J ¼ �2Re
X4
K¼1

BJKpKf 0
KðzKÞ

" #
;

R2J ¼ 2Re
X4
K¼1

BJKf 0
KðzKÞ

" #
:

ð1Þ
Here vj ¼ uj (j ¼ 1; 2; 3), v4 ¼ /, Rij ¼ rij (i ¼ 1; 2; j ¼ 1; 2; 3), and Ri4 ¼ Di (i ¼ 1; 2), where uj, /, rij and

Di are the displacement, the electric potential, the stress and the electric displacement, respectively. Re

denotes the real part, prime (0) represents the derivative with respect to the associated arguments, and fKðzKÞ
are analytic in their arguments, zK ¼ x1 þ pKx2; and pK are four distinct complex numbers with positive

imaginary. The result of general solution enables us to formulate a boundary value problem in terms of the

complex potentials. The solution to a problem of a piezoelectric material is reduced to finding the functions
fKðzKÞ, which satisfy the boundary conditions of the problem. For convenience, the one-complex-variable
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approach introduced by Suo (1990) is employed to present our solutions through the vector function, fðzÞ,
defined as
fðzÞ ¼ f1ðzÞ f2ðzÞ f3ðzÞ f4ðzÞð ÞT: ð2Þ

Here the argument has the generic form z ¼ x1 þ px2 in which Imp > 0. Im denotes the imaginary part.

Superscript T indicates the transpose and boldfaced symbols represent vectors or matrices in this paper.

Once the solution of fðzÞ is obtained for a given boundary value problem, a replacement of z1, z2, z3 or z4
should be made for each component function to calculate field quantities.

A bimaterial matrix is defined as
H ¼ iAð1ÞBð1Þ�1 þ iAð2ÞBð2Þ�1; ð3Þ

where superscripts 1 and 2 in parentheses indicate that the quantities are for the materials 1 and 2 com-

posing the bimaterial, respectively, and overbar (–) denotes the complex conjugate. Lothe and Barnett

(1976) showed that a 3 · 3 matrix with the components Hij (i; j ¼ 1; 2; 3) is positive definite and H44 < 0.H is

also Hermitian (Suo et al., 1992). We introduce a 3 · 3 bimaterial matrix bHH, which will be used subsequently

in this paper, defined as
bHHij ¼ Hij �
1

H44

Hi4H4j; ð4Þ
It can be easily shown from (4) that
bHH �1
ij ¼ H�1

ij ; ð5Þ
Making use of the properties of H, it can be shown that bHH is a positive definite Hermitian matrix. Thus, the

bimaterial matrix bHH can be written as
bHH ¼ c� ix; ð6Þ

where c is the real symmetric positive-definite matrix and x is the real anti-symmetric matrix:
b ¼ c�1x: ð7Þ

Here the bimaterial matrix b can be interpreted as one of generalized Dundurs parameters for an aniso-

tropic piezoelectric bimaterial. Various versions of generalized Dundurs parameters have been proposed for

a piezoelectric bimaterial by Beom and Atluri (1996, 2002) and for an anisotropic elastic bimaterial by
Beom and Atluri (1995). Since c is symmetric and x is anti-symmetric, it can be shown that the bimaterial

matrix b satisfies the following relations:
trðbÞ ¼ 0; trðb2Þ6 0; kbk ¼ 0; ð8Þ

where tr represents the trace of a matrix and k � k denotes the determinant of a matrix.
3. Singular crack tip field

Consider a permeable crack between two piezoelectric ceramics. We are specifically interested in singular

crack tip fields. In order to obtain a singular solution near the interface crack tip, we consider a semi-infinite

crack on the interface between two dissimilar, linear piezoelectric materials with material 1 above and

material 2 below as shown in Fig. 1. The crack lies along the negative x1 axis, and the crack is traction-free

and electrically permeable.

Continuity of tractions and normal electric displacement across the entire interface, both the bonded and
cracked portions requires that
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Fig. 1. Semi-infinite interfacial crack.
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Bð1Þf 0ð1Þðx1Þ � B
ð2Þ
f 0ð2Þðx1Þ ¼ Bð2Þf 0ð2Þðx1Þ � B

ð1Þ
f
0ð1Þðx1Þ: ð9Þ
By the standard analytic continuation arguments, we obtain from (9) that
Bð2Þf 0ð2ÞðzÞ ¼ B
ð1Þ
f
0ð1ÞðzÞ: ð10Þ
Eqs. (1) and (10) give
iDv;1 ¼ H Bð1Þf 0ð1Þðx1Þ
h

�H�1HBð2Þf 0ð2Þðx1Þ
i
: ð11Þ
Here Dv ¼ vðx1; 0þÞ � vðx1; 0�Þ. With the same arguments, the continuity of the displacement and electric
potential across the bonded interface requires that a function defined as
g0ðzÞ ¼ Bð1Þf 0ð1ÞðzÞ;
H�1HBð2Þf 0ð2ÞðzÞ

�
ð12Þ
is analytic everywhere in the region surrounding the crack tip except on the crack line. Furthermore, the

permeable condition on x1-axis leads to
H4J g0þJ ðx1Þ ¼ H4J g0�J ðx1Þ: ð13Þ
In this paper the repetition of an index in a term denotes a summation with respect to that index over its

range 1–3 for a lowercase script and 1–4 for an uppercase script, unless indicated otherwise. By the standard

analytic continuation arguments, we see from (13) for the singular solution that
H4J g0J ðzÞ ¼ 0: ð14Þ
Solving (14) for g04ðzÞ, we get
g04ðzÞ ¼ �H4j

H44

g0jðzÞ; ð15Þ
The traction-free condition on the surface of the crack can be shown to lead to a homogeneous Hilbert

problem
ĝg0þðx1Þ þ bHH�1 bHHĝg0�ðx1Þ ¼ 0; x1 < 0; ð16Þ

where ĝg0ðzÞ ¼ ð g01ðzÞ g02ðzÞ g03ðzÞ Þ

T
. Substituting (6) and (7) into (16), it is found that



H.G. Beom / International Journal of Solids and Structures 40 (2003) 6669–6679 6673
ĝg0þðx1Þ þ ðIþ ibÞ�1ðI� ibÞĝg0�ðx1Þ ¼ 0; ð17Þ

where I is the identity matrix. The singular solution of (17) for ĝg0ðzÞ can be obtained from a well-known

solution in the linear fracture mechanics of crack in an anisotropic elastic material due toWu (1990), Qu and

Li (1991) and Beom and Atluri (1995). A similar procedure permits us to obtain the singular solution from
the anisotropic elastic solutions. The singular solution of (17) for ĝg0ðzÞ is given by (see Appendix A for details)
ĝg0ðzÞ ¼ 1

2
ffiffiffiffiffiffiffi
2pz

p ðIþ ibÞYðzieÞk; ð18Þ
in which
e ¼ 1

2p
ln
1þ k
1� k

; k ¼
�
� 1

2
trðb2Þ

�1=2
; ð19Þ
where k ¼ ð k1 k2 k3 ÞT is a real constant vector. It is seen from (8) and (19) that e is a real number

depending on the real bimaterial matrix b. The matrix function YðfðzÞÞ is defined as YðfðzÞÞ � YðfðzÞ; fðzÞÞ
in which fðzÞ is an arbitrary function of z and Yðf1; f2Þ is expressed explicitly in terms of the real bimaterial

matrix b as
Yðf1; f2Þ ¼ Iþ i

2k
ðf1 � f2Þbþ

1

k2
1

�
� 1

2
ðf1 þ f2Þ

�
b2: ð20Þ
The matrix function Yðf1; f2Þ given by (20) can be shown to have the following properties:
Yð1; 1Þ ¼ I; Yðf1; f2ÞYðn1; n2Þ ¼ Yðf1n1; f2n2Þ: ð21Þ
Integrating (18), we have
ĝgðzÞ ¼
ffiffiffiffiffiffi
z
2p

r
ðIþ ibÞY zie

1þ 2ie

� �
k; ð22Þ
Since ĝg0ðzÞ is determined as above, f 0ð1ÞðzÞ and f 0ð2ÞðzÞ can be obtained from (10), (12) and (18). Thus, we

have
Bð1Þf 0ð1ÞðzÞ ¼ 1

2
ffiffiffiffiffiffiffi
2pz

p QðIþ ibÞYðzieÞk; Bð2Þf 0ð2ÞðzÞ ¼ 1

2
ffiffiffiffiffiffiffi
2pz

p QðI� ibÞYðzieÞk; ð23Þ
where Q is the 4 · 3 matrix with the components Qij ¼ dij and Q4j ¼ �H4j=H44. It is noted that the per-
meable interfacial crack tip fields have the inverse square root singularity and a pair of oscillatory singu-

larities, while the insulating interfacial crack tip fields consist of a pair of oscillatory singularities and a pair

of nonoscillatory singularities. Thus, the structure of singular fields near the permeable interfacial crack tip

differs from that near the impermeable interfacial crack tip, in contrast to the recent conclusion by Gao and

Wang (2000, 2001). The singular solution for the special case in which the bimaterial continuum degene-

rates to be a homogeneous one reduces to
Bð1Þf 0ð1ÞðzÞ ¼ Bð2Þf 0ð2ÞðzÞ ¼ 1

2
ffiffiffiffiffiffiffi
2pz

p Qk; ð24Þ
The singular stress field along the bonded interface near the crack tip is given by
sðx1Þ ¼
1ffiffiffiffiffiffiffiffiffip Yðxie1 ; x�ie

1 Þk; ð25Þ

2px1
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where s ¼ ð r21 r22 r23 ÞT. Thus, the vector of stress intensity factor which uniquely characterizes the

singular field can be defined through the equation
k ¼ lim
x1!0þ

ffiffiffiffiffiffiffiffiffi
2px1

p
Yðx�ie

1 ; xie1 Þsðx1Þ; ð26Þ
where k ¼ ðK2 K1 K3 ÞT. Since Yðx�ie
1 ; xie1 Þ and sðx1Þ are real, k is real. A stress intensity factor with the

same dimension of classical stress intensity factor, denoted by k�
l also can be defined based on the char-

acteristic length l as suggested by Wu (1990) and Qu and Li (1991) for the anisotropic elastic bimaterial

case. k̂k�
l is related to k by k�

l ¼ Yðlie; l�ieÞk. It is noted that the stress intensity factor k given in (26) for the
piezoelectric bimaterial recovers the classical intensity factor ðKII KI KIII ÞT as the bimaterial continuum

degenerates to be a homogeneous one.

The electric displacement at the bonded interface (x1 > 0) is given by
D2ðx1; 0Þ ¼
1ffiffiffiffiffiffiffiffiffi
2px1

p Re½hTðIþ ibÞ�Yðxie1 ; x�ie
1 Þk; ð27Þ
where h ¼ � 1
H44

ðH41 H42 H43 ÞT. It is noted that the singular electric displacement is characterized by the

stress intensity factors, and has the oscillatory singularity. For the special case of a homogeneous piezo-
electric material, the intensity factor of electric displacement defined as KD ¼ limx1!0þ

ffiffiffiffiffiffiffiffiffi
2px1

p
D2ðx1Þ is given

from (27) as
KD ¼ �H4j

H44

kj: ð28Þ
The electric displacement on the crack surfaces (x1 < 0) is given by
Dþ
2 ðx1; 0Þ ¼ D�

2 ðx1; 0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2px1
p Im½hT�Yð1=coshpeÞYðð�x1Þie; ð�x1Þ�ieÞk: ð29Þ
In deriving (29), the following relation has been used
ðIþ ibÞYðe�pe; epeÞ ¼ ðI� ibÞYðepe; e�peÞ ¼ Yð1=coshpeÞ: ð30Þ

It is easily seen from (29) that when the bimaterial continuum degenerates to be a homogeneous one,

Dþ
2 ðx1; 0Þ ¼ D�

2 ðx1; 0Þ ¼ 0 on the crack surfaces. This implies that the structure of singular fields for a

permeable crack in a homogeneous piezoelectric material is identical to that for the special case of an
impermeable crack with the condition (28).

The displacement jump at distance r behind of the crack tip, calculated from (1) and (23), is given by
DuðrÞ ¼
ffiffiffiffiffi
2r
p

r
Reð bHHÞY rie

coshpeð1þ 2ieÞ ;
r�ie

coshpeð1� 2ieÞ

� �
k; ð31Þ
where DuðrÞ ¼ uðx1; 0þÞ � uðx1; 0�Þ. In deriving (31), the following relation together with (30) has been used
ðHQÞjk ¼ bHHjk: ð32Þ
4. Energy release rate

The J integral for a linear piezoelectric medium, which has the physical meaning of energy release rate

due to crack extension, is defined by (Cherepanov, 1979; Pak, 1990)
Jfv;Cg ¼
Z
C
ðWn1 � tJ vJ ;1Þds: ð33Þ
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Here W is the electric enthalpy density, given by W ¼ 1
2
RiJ vJ ;i. ni is the unit outward normal vector and tJ is

the surface traction, given by tJ ¼ niRiJ . C is a path connecting any two points on opposite sides of the crack

surface and enclosing the crack tip and ds is an element of arc length along C as shown in Fig. 1. It is well

known that the generalized J integral is independence of any path C.
According to Beom and Atluri (1996), the J integral is written in the complex form, for an anisotropic

piezoelectric solid, as
J ¼ Re
X4
J¼1

Z
C
ff 0

J ðzJ Þg
2
dzJ

" #
; ð34Þ
where fðzÞ is the normalized function associated with the matrices A and B normalized according to

2AIJBIJ ¼ 1 (no sum on J ). Since the complete general solutions for the near tip fields are determined as

shown in the previous section, the relation between the J integral and the intensity factors can be derived

through the complex formula of the J integral. The J integral is evaluated with near tip fields given by (23),

resulting in
J ¼ 1
4
kTReð bHHÞðIþ b2Þk: ð35Þ
In obtaining (35), the following relations have been used:
YðzieÞ ¼ YðzieÞ; YTðzieÞReð bHHÞðIþ b2ÞYðzieÞ ¼ Reð bHHÞðIþ b2Þ;
ðIþ ibÞTReð bHHÞðIþ ibÞ ¼ Reð bHHÞðIþ b2Þ; QTReðHÞQ ¼ Reð bHHÞ:

ð36Þ
The energy release rate can be calculated by using the crack- closure energy. Thus, the energy release rate G
is given by
G ¼ lim
Da!0

1

2Da

Z Da

0

sTðrÞDuðDa� rÞdr; ð37Þ
where
sðrÞ ¼ 1ffiffiffiffiffiffiffi
2pr

p Yðrie; r�ieÞk;

DuðDa� rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðDa� rÞ

p

r
Reð bHHÞY ðDa� rÞie

coshpeð1þ 2ieÞ ;
ðDa� rÞ�ie

coshpeð1� 2ieÞ

 !
k:

ð38Þ
In obtaining (38), the condition Dv4ðDa� rÞ ¼ 0 has been used. Making use of the following relations:
YTðrie; r�ieÞReð bHHÞ ¼ Reð bHHÞYTðr�ie; rieÞ; Yð1= cos sh2peÞ ¼ Iþ b2; ð39Þ
it can be shown that
G ¼ 1
4
kTReð bHHÞðIþ b2Þk: ð40Þ
The J integral in (34), as computed directly through the complex formula of the J integral coincides with

the crack-closure energy G. For the special case in which the bimaterial continuum degenerates to be a

homogeneous one, (35) reduces to
J ¼ 1
4
kT bHHk: ð41Þ
This is identical to the well-known result for the homogeneous case (Wang and Han, 1999).
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5. Finite interfacial crack

Consider a finite crack, in the interval ð�a; aÞ, on the permeable interface between dissimilar piezo-

electric media. Due to the linearity of the problem, the solution of the problem under electromechanical
loading at infinity can be decomposed into two solutions corresponding to the solution of the uncracked

body subject to electromechanical tractions at infinity and the solution of the cracked body subject to

tractions on the crack surfaces. Our attention focuses on the problem of a piezoelectric bimaterial subject to

the tractions acting on the crack surfaces as shown in Fig. 2. Tractions t̂tþðx1Þ ¼ t̂t0ðx1Þ and t̂t�ðx1Þ ¼ �t̂t0ðx1Þ
are applied on the upper and lower surfaces of the crack, respectively. Here t̂t ¼ ð t1 t2 t3 ÞT. The solution
procedure is similar to the case of the semi-infinite crack. For a finite crack in interval ð�a; aÞ, the boundary
condition on the crack surfaces leads to the following Hilbert problem for the determination of f 0ð1ÞðzÞ:
ðIþ ibÞyþðx1Þ þ ðI� ibÞy�ðx1Þ ¼ �t̂t0; �a < x1 < a: ð42Þ

where yðzÞ ¼ ðIþ ibÞ�1

ĝg0ðzÞ. A homogeneous solution XðzÞ which satisfies the homogeneous Hilbert

problem
ðIþ ibÞXþðx1Þ þ ðI� ibÞX�ðx1Þ ¼ 0; �a < x1 < a; ð43Þ

may be written as
XðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p Y
z� a
zþ a

� �ie !
: ð44Þ
From (42) and (43), we find
yðzÞ ¼ 1

2pi
XðzÞ

Z a

�a

1

z� n
½ðIþ ibÞXþðnÞ��1

t̂t0 dn: ð45Þ
Using (44) and (45), it can be shown that a solution of f 0ðzÞ is given by
Bð1Þf 0ð1Þ zð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p QY
z� a
zþ a

� �ie !Z a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � n2

p
z� n

Yðf�ie
0 ; fie0 Þ̂tt0 dn;

Bð2Þf 0ð2ÞðzÞ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p QY
z� a
zþ a

� �ie !Z a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � n2

p
z� n

Yðf�ie
0 ; fie0 Þ̂tt0 dn;

ð46Þ
Material 2

Material 1

a2

x1

x2

0t̂

0t̂−

Fig. 2. Finite interfacial crack with mechanical crack facing loading.
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where f0 ¼ a�n
aþn e

ip. The stress intensity factor is evaluated by using (26) and (46), which results in
k ¼ 1ffiffiffiffiffiffi
pa

p
Z a

�a
Yðð2af0Þ�ie

; ð2af0ÞieÞðIþ ibÞ�1
t̂t0

ffiffiffiffiffiffiffiffiffiffiffi
aþ n
a� n

s
dn: ð47Þ
For the case in which t̂t0 is a constant vector, (46) reduces to
Bð1Þf 0ð1ÞðzÞ ¼ 1

2
QðIþ ibÞ zffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p Y

z� a
zþ a

� �ie !"
� I

#
t̂t0;

Bð2Þf 0ð2ÞðzÞ ¼ 1

2
QðI� ibÞ zffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p Y

z� a
zþ a

� �ie !"
� I

#
t̂t0:

ð48Þ
In the derivation of (48), the following relation has been used:
Z a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � n2

p
z� n

Yðf�ie
0 ; fie0 Þdn ¼ pðIþ ibÞ zI

(
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
Y

z� a
zþ a

� ��ie
 !)

: ð49Þ
The stress intensity factor for the special case is given by
k ¼
ffiffiffiffiffiffi
pa

p
Yðð2aÞ�ie

; ð2aÞieÞ̂tt0: ð50Þ
It is noted that the stress intensity factors depend only on applied mechanical loading, which is consistent

with the result obtained by Gao and Wang (2000). The electric displacement and the electric field on the
crack surfaces (jx1j < a) are evaluated from (1) and (48), which results in
Dþ
2 ðx1; 0Þ ¼ D�

2 ðx1; 0Þ

¼ �Re½hTðIþ ibÞ�̂tt0 þ x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

p Im½hT�Yð1=coshpeÞY a� x1
aþ x1

� �ie

;
a� x1
aþ x1

� ��ie
 !

t̂t0;

Eþ
1 ðx1; 0Þ ¼ E�

1 ðx1; 0Þ

¼ �Re½h�TðIþ ibÞ�̂tt0 þ x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

p Im½h�T�Yð1=coshpeÞY a� x1
aþ x1

� �ie

;
a� x1
aþ x1

� ��ie
 !

t̂t0;

ð51Þ
where
h�j ¼ �1
2
½ðAð1ÞBð1Þ�1 þ Að2ÞBð2Þ�1ÞQ�4j: ð52Þ
In obtaining (51), (30) and the following relation:
½Að1ÞBð1Þ�1Q�4j ¼ ½Að2ÞBð2Þ�1Q�4j; ð53Þ
has been used. It is noted that the electric displacement and the electric field on the crack surfaces are

oscillatory singular near the crack tip. For the special case of a homogeneous piezoelectric material, (48)
reduces to
Bf 0ðzÞ ¼ 1

2
Q

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � a2

p
�

� 1

�̂
tt0: ð54Þ
The stress intensity factor for the special case of a homogeneous piezoelectric material is obtained from (50)

as
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k ¼
ffiffiffiffiffiffi
pa

p
t̂t0: ð55Þ
It is also easily seen from (51) that the electric displacement and the electric field on the crack surfaces

(jx1j < a) are of the forms
Dþ
2 ðx1; 0Þ ¼ D�

2 ðx1; 0Þ ¼ �hT t̂t0; Eþ
1 ðx1; 0Þ ¼ E�

1 ðx1; 0Þ ¼ �h�T t̂t0: ð56Þ
The result of the electric displacement on the crack surface is consistent with that obtained by Gao and

Wang (2000).
6. Concluding remarks

A crack with electrically permeable surfaces on the interface between two dissimilar piezoelectric ce-

ramics under electromechanical loading is considered. The analytic solution of the singular crack-tip fields

for a permeable interfacial crack between dissimilar piezoelectric materials is obtained here using an

analysis based on the complex function theory. It is shown that the singular fields near the permeable

interfacial crack tip are uniquely characterized by the real valued stress intensity factors proposed in this

paper. The permeable interfacial crack-tip fields consist of both an inverse square root singularity and a

pair of oscillatory singularities. Thus, the structure of singular fields near the permeable interfacial crack tip

is in general different from that near an impermeable interfacial crack tip, in contrast to the result by
previous works. When the bimaterial continuum degenerates to be a homogeneous one, however, the

structure of singular fields for a permeable crack reduces to that for an impermeable crack with different

intensity factors. The energy release rate is obtained in terms of the stress intensity factors through the

complex formula of the J integral, which coincides with that calculated by using the crack-closure energy. A

closed form of the solution for a finite permeable crack on the interface between dissimilar piezoelectric

media is also derived.
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Appendix A. Derivation of (18)

Introducing a vector function vðzÞ defined by
vðzÞ ¼ ðIþ ibÞ�1
ĝg0ðzÞ; ðA:1Þ
Eq. (17) is rewritten as
ðIþ ibÞvþðx1Þ þ ðI� ibÞv�ðx1Þ ¼ 0; �1 < x1 < 0; ðA:2Þ
A singular solution of (A.2) for vðzÞ can be found by considering functions of the form vðzÞ ¼ z�1=2þidv,

where v is an eigenvector. Substitution of vðzÞ ¼ z�1=2þidv into (A.2) yields
ðbþ igIÞv ¼ 0; ðA:3Þ
where g ¼ tanhpd. For a nontrival solution of v, we have



H.G. Beom / International Journal of Solids and Structures 40 (2003) 6669–6679 6679
kbþ igIk ¼ 0: ðA:4Þ
Solving the eigenvalue problem (A.3), we have the three eigenvalues, g1 ¼ k, g2 ¼ �k and g3 ¼ 0, and the

associated eigenvectors, v1, v2 and v3. In obtaining the eigenvalues, (8) has been used. A general expression

for the singular solution may be written as
vðzÞ ¼ 1

2
ffiffiffiffiffiffiffi
2pz

p VZðzie; z�ieÞV�1k; ðA:5Þ
where V ¼ ð v1 v2 v3 Þ and Zðf1; f2Þ ¼ diagð f1 f2 1 Þ. Defining a matrix function Yðf1; f2Þ as

Yðf1; f2Þ ¼ VZðf1; f2ÞV�1, it can be shown that
Yðf1; f2Þ ¼ Iþ 1
2
ðf1 � f2ÞX1 þ 1

2
ðf1

�
þ f2Þ � 1

�
X2; ðA:6Þ
where I1 ¼ diagð 1 �1 0 Þ, X1 ¼ VI1V
�1 and X2 ¼ VI21V

�1. Making use of the following relations:
bV ¼ �iVK; K ¼ kI1; ðA:7Þ
where K ¼ diagð k �k 0 Þ, it can be shown that
X1 ¼
i

k
b; X2 ¼

�1

k2
b2: ðA:8Þ
Substituting (A.8) into (A.6), we have the expression of Yðf1; f2Þ in (20). Thus, (A.5) is rewritten as
vðzÞ ¼ 1

2
ffiffiffiffiffiffiffi
2pz

p Yðzie; z�ieÞk: ðA:9Þ
Finally, we get (18) from (A.1) and (A.9).
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